(x^2-6x+3)=(3x+2x^2-1)

Simple and best practice solution for (x^2-6x+3)=(3x+2x^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-6x+3)=(3x+2x^2-1) equation:



(x^2-6x+3)=(3x+2x^2-1)
We move all terms to the left:
(x^2-6x+3)-((3x+2x^2-1))=0
We get rid of parentheses
-((3x+2x^2-1))+x^2-6x+3=0
We calculate terms in parentheses: -((3x+2x^2-1)), so:
(3x+2x^2-1)
We get rid of parentheses
2x^2+3x-1
Back to the equation:
-(2x^2+3x-1)
We add all the numbers together, and all the variables
x^2-6x-(2x^2+3x-1)+3=0
We get rid of parentheses
x^2-2x^2-6x-3x+1+3=0
We add all the numbers together, and all the variables
-1x^2-9x+4=0
a = -1; b = -9; c = +4;
Δ = b2-4ac
Δ = -92-4·(-1)·4
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{97}}{2*-1}=\frac{9-\sqrt{97}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{97}}{2*-1}=\frac{9+\sqrt{97}}{-2} $

See similar equations:

| 5x+14=-3x-17 | | 5q2+2q–6=0 | | -4y-8=5y+28 | | 55-2.5x=45-2x | | 2b+9=2b+9 | | 4-2n/3=-8 | | 8x+4+3=7 | | 2.75x=20 | | 4x^2-85x=465 | | 0,8x=8 | | 7-b=19 | | 8z–1=3 | | 12n+6=9n-15 | | 0.5x-6=-18 | | -7+(9v+4)=31 | | 4(p-3)=5p+1 | | 3(×-1)-x=3+2(x-3) | | -15x-83=x–19 | | 3x+3-x+-7=6 | | x2169=0 | | 0.2X+1.5=0.25-0.3x | | 8x-3=2x-7 | | 8n+7=6n-9 | | 34+4y-6=14y-14-4y | | 2p(3p-1)=0 | | 8n=32,n= | | x-3=1+x+x | | ​6​​7​​=​24​​k−11​​ | | a+0.3=−2 | | E^2x-3=0 | | 62.5=x(11-2x)(8.5-2x) | | 3x+3-2x=x+3 |

Equations solver categories